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GENERATING FUNCTIONS FOR PLATEAUS IN
MOTZKIN PATHS

Dan Drake* and Ryan Gantner**

Abstract. A plateau in a Motzkin path is a sequence of three
steps: an up step, a horizontal step, then a down step. We find three
different forms for the bivariate generating function for plateaus in
Motzkin paths, then generalize to longer plateaus. We conclude by
describing a further generalization: a continued fraction form from
which one can easily derive new multivariate generating functions
for various kinds of path statistics. Several examples of generating
functions are given using this technique.

A Motzkin path is a finite sequence of steps with the following proper-
ties: each step is “up” (labeled U), “horizontal” (labeled H), or “down”
(labeled D); at any point in the sequence, the number of up steps is at
least as big as the number of down steps; the total number of up steps
in the sequence is equal to the total number of down steps. The number
of steps in the sequence is referred to as the length of the path. Motzkin
paths can be visualized as graphs in the plane beginning at (0, 0) and
consisting of up steps in direction (1, 1), horizontal steps in direction
(1, 0), and down steps in direction (1,−1). In this visualization, the
path ends at point (n, 0), where n is the length of the path, and never
passes below the horizontal axis. We will use this visualization to refer
to the points between steps as vertices.

To begin, we define a plateau in a Motzkin path to be a subsequence
of the path consisting of an up step immediately followed by a horizontal
step immediately followed by a down step (such a subsequence is often
abbreviated UHD). In this paper we establish several forms for generat-
ing functions that count plateaus for Motzkin paths. We then generalize
those methods to longer plateaus and also use continued fractions to de-
rive similar bi- and multivariate generating functions.
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The enumeration of plateaus in Motzkin paths has applications in
the theory of RNA secondary structures [2, 5]. Work by Prodinger and
Wagner [4] examines plateaus in Motzkin paths with a different goal.

1. Forms for generating functions

In this section we state three theorems about forms for the generating
function which counts plateaus for Motzkin paths. Let cp

n be the number
of Motzkin paths of length n with p plateaus, and let

g(x, y) =
∞∑

n=0

bn
3
c∑

p=0

cp
nxnyp,

so g is the bivariate generating function for this array.

Theorem 1.1. The function g has an integral/differential form given
by

(1.1) g(x, y) =
1− 2x3

1− 2x3(1− y)

(
f0(x) +

x

1− 2x3

∂

∂x
x3

∫ y

0
g(x, t) dt

)
,

where

f0(x) =
1− x + x3 −

√
(1− x + x3)2 − 4x2

2x2
.

Theorem 1.2. The function g has a differential form given by

(1.2)
∂

∂x
xg

(
x,

z

x3

)
= (1− z − 2x3)

∂

∂z
g

(
x,

z

x3

)
.

Proposition 1.3. The function g has an explicit form given by

g(x, y)

=
1− x + x3 − x3y −

√
(1− 3x + x3 − x3y)(1 + x + x3 − x3y)

2x2
.

(1.3)

2. Proof of results 1.1–1.3

Our plateau-counting formulas depend on a recursion among the cp
n.

This can be obtained by the process of “sewing in” a plateau, as the
first lemma reveals. After stating and proving the lemma, we’ll turn to
proving the theorems.
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Lemma 2.1. If we set cp
n = 0 when p is negative or n is negative, then

the cp
n satisfy

(2.1) cp
n =

n− 2p

p
cp−1
n−3 + 2cp

n−3

for all n and for all p > 0.

Proof of Lemma 2.1. To get a path of length n with p plateaus, we
can start with a path of length n − 3 with p − 1 plateaus and sew in a
plateau by inserting a UHD subpath at any vertex. There are n− 3 + 1
vertices into which a plateau can be sewn in a path of length n − 3.
Sewing in a plateau in this way always gives us a new plateau and a
Motzkin path of length n. Sometimes, however, the sewing operation
destroys an existing plateau in the path of length n− 3. If a plateau is
sewn on a vertex that is adjacent to the horizontal step in an existing
plateau (such a vertex will be said to be inside a plateau), we destroy the
plateau that was in the original path of length n− 3 in order to create
one in the path of length n. In all other places, sewing in a plateau
creates a new plateau without destroying a previous one. In summary,
to get a path of length n with p plateaus, we can sew in a plateau at
any of the n− 3 + 1− 2(p− 1) vertices which are not inside a plateau in
a path of length n − 3 with p − 1 plateaus, or we can sew in a plateau
at any of the 2p vertices inside plateaus of a path of length n − 3 with
p plateaus. By doing this, we can generate all of the paths of length n
with p plateaus. In fact, we generate each path p times, according to
our choice of which plateau is sewn in. Thus, we get the recursion

cp
n =

n− 2− 2(p− 1)
p

cp−1
n−3 +

2p

p
cp
n−3

which simplifies to (2.1).

As a note, to use the recursion, we’ll need to be given the sequence
{c0

n}. We’ll see that the sequence {c0
n} obeys a Catalan-like recurrence

relation given below in (2.3).
To give a sense of what this array of numbers looks like, see the table

of values of cp
n for small n and p given in Table 1. That triangle is

sequence A114583 in the OEIS [3].

2.1. Proof of Theorem 1.1: generating functions for each p

To prove Theorem 1.1, we first find the generating function for the
sequence {c0

n}∞n=0, the first column of Table 1. Let f0(x) denote that



478 Dan Drake and Ryan Gantner

p: 0 1 2 3 4
n: 0 1

1 1
2 2
3 3 1
4 7 2
5 15 6
6 36 14 1
7 85 39 3
8 209 102 12
9 517 280 37 1

10 1303 758 123 4
11 3312 2085 381 20
12 8510 5730 1194 76 1
13 22029 15849 3657 295 5
14 57447 43914 11187 1056 30

Table 1. cp
n for small values of n and p.

generating function. We first give a proof of the following (known) result;
see OEIS sequence A114584 [3].

Lemma 2.2. The function f0 is given by

(2.2) f0(x) =
∞∑

n=0

c0
nxn =

1− x + x3 −
√

(1− x + x3)2 − 4x2

2x2
.

Furthermore, the sequence {c0
n} satisfies

(2.3) c0
n = c0

n−1 + c0
n−2 +

n−2∑

k=2

c0
kc

0
n−k−2.

Proof of Lemma 2.2. The terms of the sequence {c0
n} are the number

of Motzkin paths of various lengths which have no plateaus. Each such
path falls into one of three categories.

Category 0: the empty path. This contributes 1 to f0(x).
Category 1: the path starts with a horizontal step. In this case, the

horizontal step is followed by a Motzkin path of length n − 1 with no
plateaus. The generating function for such paths is xf0(x).

Category 2: the path starts with an up step. In this case, the path
can be decomposed into

1. an up step,
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2. a plateau-free Motzkin path that is not a single horizontal step,
3. a down step, then
4. any plateau-free Motzkin path.

That decomposition tells us that the generating function for paths in
category 2 is x(f0(x)− x)xf0(x).

Every plateau-free Motzkin path falls into exactly one of the above
categories, so

f0(x) = 1 + xf0(x) + x2f0(x)(f0(x)− x),

which after an application of the quadratic formula yields

f0(x) =
1− x + x3 ±

√
(1− x + x3)2 − 4x2

2x2
.

The limit of f0(x) as x goes to zero is 1 (the empty path has no plateau),
so we may take limits of both possibilities for f0(x) to see that only the
subtraction term in the numerator makes sense, which gives (2.2).

Similar reasoning with the above categories and decomposition yields
the recurrence relation for c0

n in (2.3).

Proof of Theorem 1.1. Knowing f0(x) and the recurrence relation from
Lemma 2.1, we can calculate the generating functions fp(x) =

∑
n cp

nxn.
For p > 0, one can multiply both sides of (2.1) by xn and sum over
n ≥ 0 to get

fp(x) =
∞∑

n=0

cp
nxn =

∞∑

n=0

n− 2p

p
cp−1
n−3x

n + 2
∞∑

n=0

cp
n−3x

n

=
1
p

∞∑

n=0

ncp−1
n−3x

n − 2x3fp−1(x) + 2x3fp(x).

The remaining sum above equals

x

p

d
dx

[
x3fp−1(x)

]
,

so one solves to find a recurrence relation for fp for p ≥ 1:

(2.4) fp(x) =
1

1− 2x3

(
x

p

d
dx

[
x3fp−1(x)

]− 2x3fp−1(x)
)

,

which can also be written

(2.4′) fp(x) =
x2p+1

p(1− 2x3)
d
dx

[
x3−2pfp−1(x)

]
.
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We can use the recurrence for the generating functions fp(x) to de-
rive the integral/differential form for g(x, y) in (1.1). Start with (2.4),
multiply both sides by yp and sum over all p ≥ 1. This yields

g(x, y)− f0(x) =
1

1− 2x3

∞∑

p=1

(
x

p

∂

∂x
x3fp−1(x)− 2x3fp−1(x)

)
yp.

A little rearrangement and simplification leads to

g(x, y) = f0(x) +
y

1− 2x3




∞∑

p=1

x

p

∂

∂x
x3fp−1(x)yp−1 − 2x3g(x, y)


 ,

and since
∞∑

p=1

1
p

∂

∂x
x3fp−1(x)yp−1 =

1
y

∂

∂x
x3

∫
g(x, y) dy,

we can solve for g to get our first expression for g(x, y) to get (1.1).

2.2. Proof of Theorem 1.2: summing array diagonals

In Theorem 1.1, we found a functional equation for g by finding gen-
erating functions for the columns of Table 1. For Theorem 1.2, we find
a form for g by looking at the diagonals of that table. Let hk(z) =∑∞

m=0 dmzm, where dm = cm
3m+k. For instance, h0(z) =

∑∞
m=0 cm

3mzm =∑∞
m=0 1zm = 1/(1 − z), since there is just one path of length 3m with

m plateaus. Using the recursion from Lemma 2.1, we get

cm
3m+k =

m + k

m
cm−1
3m+k−3 + 2cm

3m+k−3.

Substituting this into the generating function hk, we get
∞∑

m=0

dmzm = c0
k +

∞∑

m=1

(
m + k

m
cm−1
3(m−1)+k + 2cm

3m+(k−3)

)
zm

= c0
k +

∞∑

m=1

cm−1
3(m−1)+kz

m +
∞∑

m=1

k

m
cm−1
3(m−1)+kz

m + 2
∞∑

m=1

cm
3m+(k−3)z

m

which reduces to

hk(z) = zhk(z) + k

∫ z

0
hk(t) dt + 2hk−3(z)− 2c0

k−3 + c0
k.

Upon differentiation, we get the differential difference equation

(2.5) h′k(z) = zh′k(z) + hk(z) + khk(z) + 2h′k−3(z)
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Returning to g, we can use (2.5) to derive (1.2): first observe that

g(x, y) =
∑

k≥0

hk(x3y)xk,

so that
∂

∂x
xg

(
x,

z

x3

)
=

∑

k≥0

(k + 1)hk(z)xk and

∂

∂z
g

(
x,

z

x3

)
=

∑

k≥0

h′k(z)xk.

Since (2.5) can be rearranged into

(k + 1)hk(z) = (1− z)h′k(z)− 2h′k−3(z),

if one multiplies both sides of that equation by xk and sums over all k,
we obtain (1.2) and complete the proof of Theorem 1.2.

Remark 2.3. Much more can be said about the functions hk from
the proof above. For instance, one may solve the differential equation
(2.5) using standard techniques to obtain, for k ≥ 3,

(2.6) hk(z) =
1

(1− z)k+1

(
c0
k + 2

∫ z

0
(1− t)kh′k−3(t) dt

)
.

We just need three initial conditions: when k = 0, we already know that
h0(z) = 1/(1−z). If k = 1, the recurrence yields the sequence of positive
natural numbers, whose generating function is 1/(1 − z)2, and if k =
2, the recurrence relation produces the sequence 2, 6, 12, 20, 30, 42, . . . ,
whose generating function is simply the derivative of the previous: 2/(1−
z)3. With these three initial generating functions and the recurrence
relation (2.6), any hk(z) can be found. Note that if one defines hk(z) = 0
for negative k, the recurrence (2.6) holds for all nonnegative k.

Furthermore, for k = 0, 1, and 2, hk is a rational function whose
denominator is (1 − z)k+1, and it is a simple matter to use induction
to prove that the same is true for all k: if hk−3 is a rational function
of the form p/(1 − z)k−2, where p is a polynomial of degree d, then
the integrand in (2.6) is a polynomial of degree d + 1, so the second
factor in that expression is a polynomial of degree d+2, and we see that
the numerator of hk has degree 2bk/3c. Moreover, if Nk denotes the
numerator of hk, the numerators obey the differential difference equation

Nk(z) = c0
k + 2

∫ z

0
(1− t)

(
(1− t)

d
dt

Nk−3(t) + (k − 2)Nk−3(t)
)

dt.
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2.3. Proof of Proposition 1.3: explicit form

The generating function in Proposition 1.3 is known—see OEIS se-
quence A114583 [3]—but for completeness we present a proof here.

As a third approach to finding the generating function for the array
{cp

n}, we can take the categories of paths defined in subsection 2.1 for
plateau-free Motzkin paths and use them to work on all Motzkin paths.
Each Motzkin path falls into one of three categories: the path is empty,
it begins with a horizontal step, or it begins with an up step. If it
begins with an up step, it is of the form “UPDQ” where P and Q
are Motzkin paths. Since Q can be any Motzkin path, the generating
function describing the possibilities for Q is simply g. For P , we can
have any path, but if we use a path that is a single horizontal step, we
will create an extra plateau which is unaccounted for in the generating
function multiplication. To combat this, we can subtract x from g and
add xy to count the plateau properly. Therefore, g(x, y) satisfies

(2.7) g(x, y) = 1 + xg(x, y) + x(g(x, y)− x + xy)xg(x, y).

We can again use the quadratic formula in that functional equation and
take limits to find the explicit form given in (1.3).

3. Generalization to longer plateaus

We can generalize the approaches in the three theorems above to
longer plateaus. Define a plateau of length r to be a subsequence of
a Motzkin path consisting of an up step, immediately followed by r
consecutive horizontal steps, then a down step (we will abbreviate such a
subsequence as “UHrD”). Using this definition, the previous calculations
have been for plateaus of length 1. Since the groundwork has been laid,
in this section we quickly state and prove results similar to the previously
stated lemmas and theorems. We set rc

p
n to be the number of Motzkin

paths of length n with p plateaus of length r

Lemma 3.1. With rc
p
n as above, we have

(3.1) rc
p
n =

n− (r + 1)p
p

rc
p−1
n−(r+2) + (r + 1)rc

p
n−(r+2).

Proof. We observe that there are r+1 vertices inside each plateau for
which sewing in a plateau destroys the existing plateau upon creating
another. Also, sewing in a plateau of length r increases the length of
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the path by r + 2. Therefore, we get the recursion

rc
p
n =

n− (r + 1)− (r + 1)(p− 1)
p

rc
p−1
n−(r+2) +

(r + 1)p
p

rc
p
n−(r+2),

which simplifies to (3.1).

We now quickly address each of the three approaches we used earlier
for finding forms for the generating function

rg(x, y) =
∞∑

n=0

bn/(r+2)c∑

p=0

rc
p
nxnyp.

Theorem 3.2. The function rg satisfies the integral/differential form

(3.2) rg(x, y) =
1− (r + 1)xr+2

1− (r + 1)xr+2(1− y)

(
rf0(x)

+
x

1− (r + 1)xr+2

∂

∂x
xr+2

∫ y

0
rg(x, t) dt

)
,

where

rf0(x) =
−x + x2+r + 1−

√
(x− x2+r − 1)2 − 4x2

2x2
.

Proof. We find a relationship for the generating functions rfp(x) =∑∞
n=0 rc

p
nxn for each p, as we did in Lemma 2.2. We use the same

categorization as discussed in the proof of that lemma, simply noting
that now the second category consists of Motzkin paths that have an
up step, then a Motzkin path with no plateaus of length r which is not
a sequence of r horizontal steps, then a down step, then any Motzkin
path with no plateaus of length r. We use this to obtain

rf0(x) = 1 + xrf0(x) + x2
rf0(x)(rf0(x)− xr),

where rf0(x) is the generating function for number of Motzkin paths of
length n with no plateaus of length r. Solving the quadratic equation
above yields an explicit form

(3.3) rf0(x) =
∞∑

n=0

rc
0
nxn =

−x + x2+r + 1−
√

(x− x2+r − 1)2 − 4x2

2x2
.

The recursion for rc
p
n analogous to (2.3) in Lemma 2.2 is

rc
0
n = rc

0
n−1 +

n−2∑

k=0

rc
0
krc

0
n−k−2 − rc

0
n−r−2.
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We then continue as in the proof of Theorem 1.1 by multiplying both
sides of (3.1) by xn and summing over n ≥ 0 to get

rfp(x) =
∞∑

n=0

rc
p
nxn =

∞∑

n=0

n− (r + 1)p
p

rc
p−1
n−(r+2)x

n+(r+1)
∞∑

n=0

rc
p
n−(r+2)x

n.

This can be manipulated using the same techniques as earlier to get the
integral/differential form for rg in (3.4).

Next, we can use the technique of summing array diagonals to get
another form for rg.

Theorem 3.3. The function rg satisfies

(3.4)
∂

∂x
xrg

(
x,

z

xr+2

)
= (1− z − (r + 1)xr+2)

∂

∂z
rg

(
x,

z

xr+2

)
.

Proof. Define rhk(z) to be
∑∞

m=0 rdmzm, where rdm = cm
(r+2)m+k.

Using the recursion in Lemma 3.1, we get

rc
m
(r+2)m+k =

m + k

m
rc

m−1
(r+2)m+k−(r+2) + (r + 1)rc

m
(r+2)m+k−(r+2),

which upon substitution into the definition of rhk, becomes

rhk(z) = rc
0
k+

∞∑

m=1

(
m + k

m
rc

m−1
(r+2)(m−1)+k + (r + 1)rc

m
(r+2)m+k−(r+2)

)
zm.

Upon differentiation we get

(3.5) rh
′
k(z) = zrh

′
k(z) + rhk(z) + krhk(z) + (r + 1)rh

′
k−(r+2)(z),

a differential difference equation similar to (2.5). This gives rise to (3.4),
which is similar to (1.2) from Theorem 1.2.

Finally, following the approach of the proof of Proposition 1.3, we
show the following.

Proposition 3.4. The function rg has explicit form

rg(x, y)

=
1− x + xr+2 − xr+2y −

√
(1− x + xr+2 − xr+2y)2 − 4x2

2x2
.

(3.6)

Proof. We understand that either a Motzkin path is empty, it begins
with a horizontal step, or it begins with an up step. If it begins with
an up step, it is of the form “UPDQ” where P and Q are Motzkin
paths. Since Q can be any Motzkin path, the generating function for
that part of the decomposition is rg. For P , we can have any path, but
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if we use a path that is a sequence of r horizontal steps we will create
an extra plateau which is unaccounted for in the generating function
multiplication. To combat this, we can subtract xr from g(x, y) and add
xry. Therefore, rg(x, y) satisfies

(3.7) rg(x, y) = 1 + xrg(x, y) + x2
rg(x, y)(rg(x, y)− xr + xry).

We use the quadratic formula in (3.7) to solve for rg explicitly to get
(3.6).

Remark 3.5. Observe that if r = 0, then the “plateaus” are just
UD subpaths—that is, they are peaks, and when r = 0 the generating
function in Proposition 1.3 does correctly count Motzkin paths in which
peaks have weight y; see OEIS sequence A097860 [3].

4. Further generalizations and continued fraction expansions

The functional equation (3.7) leads us to a continued fraction form
that generalizes the above generalization. Instead of choosing a specific
plateau length, let us rewrite (3.7) as:

(4.1) G(x, y) = 1 + xG(x, y) + x(G(x, y) + C)xG(x, y);

here C simply stands for whatever correction we need to make for
plateaus. Rearrange that functional equation and we have:

G(x, y) =
1

1− x− x2C − x2G(x, y)
.

Inductively replacing G with the right-hand side of that equation yields
the continued fraction expansion

(4.2) G(x, y) =
1

1− x− x2C − x2

1− x− x2C − x2

1− x− x2C − x2

1− · · ·

,

which we will write more compactly as

G(x, y) =
1 |

| 1− x− x2C
− x2 |
| 1− x− x2C

− x2 |
| 1− x− x2C

− · · ·

We can use this discussion to get continued fraction expansions for g
and rg from earlier.
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Theorem 4.1. The function g of results 1.1–1.3 has a continued frac-
tion expansion given by

(4.3) g(x, y) =
1 |

| 1− x− x2(xy − x)
− x2 |
| 1− x− x2(xy − x)

− · · · .

Proof. In our original problem, we needed to give weight xy to the
horizontal step in a UHD subpath, not x, so in the above continued
fraction, we simply set C = xy − x in (4.2).

Theorem 4.2. The function rg of Theorems 3.2–3.4 has a continued
fraction expansion given by

(4.4) rg(x, y) =
1 |

| 1− x− x2(xry − xr)
− x2 |
| 1− x− x2(xry − xr)

− · · ·

Proof. Set C = xry − xr in (4.2).

This form of the generating function has two advantages: first, we
can specialize C to represent whatever plateau (or other features of the
path) that we want, and second, we now have “infinitely many Cs”. The
C appearing at the kth level of (4.2) corresponds to corrections made
at height k in a path (see Flajolet [1, Theorem 1]), so we can generalize
that continued fraction expansion to

(4.5) G(x, y) =
1 |

| 1− x− x2C1
− x2 |
| 1− x− x2C2

− x2 |
| 1− x− x2C3

−· · ·

Now Ck refers to the “correction term” for parts of the path occurring
at height k. We can now easily find the generating function for many
variations of the problems considered here. Here are several examples.

Corollary 4.3. The generating function for Motzkin paths with no
peaks (UD subpaths) is

x2 − x + 1−√x4 − 2x3 − x2 − 2x + 1
2x2

.

Proof. Set C = −1 in (4.1) to correct for the empty path between
the up and down steps and solve as before.

Remark 4.4. This is a very well-known result; see sequence A004148
in the OEIS [3].

Corollary 4.5. The generating function for Motzkin paths in which
only plateaus at odd height have weight y is

(1− x)
(
A +

√
A(A + 4x2)

)

2x2A
,
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where A = (1− x)(x2(xy − x) + x− 1).

Proof. Set C2k+1 = xy − x and C2k = 0 in (4.5). At even height, no
correction is necessary. In this case, if we call the generating function
f(x, y), we easily get

f(x, y) =
1

1− x− x2(xy − x)− x2

1− x− x2f(x, y)

;

The proof is completed by solving for f .

Remark 4.6. The corresponding triangle is surprisingly close—but
not equal—to sequence A114581 in the OEIS. (They differ for paths of
length 7.)

Corollary 4.7. The generating function for Motzkin paths in which
UHDs have weight y, UHHDs have weight z, and no plateaus of length
three or more appear is

(4.6)
−(A(2) + 1) +

√
(A(4) + 1)(A(0) + 1)

2x2(x− 1)
,

where A(k) = x(x− 1)(x3z + x2y + x + k).

Proof. In (4.5), set Ck = xy−x+x2z−x2−x3/(1−x). To explain why,
notice that the xy−x and x2z−x2 terms give the correct weights to UHD
and UHHDs, respectively, and subtracting x3/(1−x) = x3+x4+x5+· · ·
eliminates the possibility of plateaus of length three or more. Using the
functional equation (4.1) one can find that the generating function is as
in (4.6).

Remark 4.8. Notice that, by setting y and z to 1 in (4.6), this
is another way of counting the number of Motzkin paths with mini-
mal plateau length 1 and maximal plateau length 2. (Compare with
Prodinger and Wagner [4].)

The next result may be very complicated and not particularly use-
ful, but it does illustrate how the approach here makes some difficult
generating functions very straightforward to compute.

Corollary 4.9. The generating function which counts Motzkin paths
in which UHDs at height 2 or more have weight y, and UHHDs at a
height that is a multiple of 3 have weight z is given by

G(x, y, z) =
1

1− x− x2p
,
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where

p = −A +
√

B

2x2D
,

and

A = x2Y (x2Y (x2Y + 3x− 3) + x2Z(x2Y + 2x− 2) + 2x2 − 6x + 3)

+ x2Z(2x2 − 2x + 1)− 2x2 + 3x− 1,

B = (x2Y − 1)(x2Y + 2x− 1)(D − x3Y − x3Z − 2x2 + x)

(D + x3Z + x3Y − x),

D = x2Y (x2Z + x2Y + x− 2) + (y − z)x4 + x3Z − 2x + 1,

Y = xy − x,

Z = x2z − x2.

Proof. It is easy to see what our correction terms must be:

k 1 2 3 4 5 6 7 8 9 10
Ck 0 Y Y + Z Y Y Y + Z Y Y Y + Z Y · · ·

Above, the correction term Y equals xy − x and Z equals x2z − x2.
If G is the generating function for such paths, the continued fraction
expansion for g is

(4.7)

G =
1 |

| 1− x
− x2 |
| 1− x− x2Y

− x2 |
| 1− x− x2(Y + Z)

− x2 |
| 1− x− x2Y

− x2 |
| 1− x− x2Y

− x2 |
| 1− x− x2(Y + Z)

− · · ·

We need to split off the “purely periodic” part of that continued fraction;
call that generating function p. It satisfies

p =
1 |

| 1− x− x2Y
− x2 |
| 1− x− x2(Y + Z)

− x2 |
| 1− x− x2Y − x2p

and therefore equals

p = −A +
√

B

2x2D
,

with A, B, and D as in the statement of the theorem. The theorem now
follows.
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